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Abstract
Taking the (2 + 1)-dimensional Broer–Kaup–Kupershmidt system as a simple
example, some special types of (2 + 1)-dimensional compacton solutions are
constructed. It is shown that there is quite rich interaction behaviour between
two travelling compactons. For some types of compactons, the interactions
among them may not be completely elastic. For some others, the interactions
are completely elastic. There is no phase shift for the interactions of the
(2 + 1)-dimensional compactons discussed in this paper.

PACS number: 02.30.Ik

1. Introduction

Recently, in addition to the peakon solutions (a special type of weak solution of the
(1 + 1)-dimensional Camassa–Holm (CH) equation [1]), some other types of weak solutions
in nonlinear systems have attracted much attention. Among them, the so-called compacton
solution is one of the most important excitations. Compacton solutions describe the typical
(1 + 1)-dimensional soliton solutions with finite wavelength when the nonlinear dispersion
effects are included in the models [2] and may have many interesting properties and possible
physical applications [3–5]. For instance, the compacton equations may be used to study
the motion of ion-acoustic waves and a flow of a two-layer liquid [4]. In [5], the Painlevé
integrability of two sets of Korteweg–de Vries (KdV) type and modified KdV-type compacton
equations are proved.

In this short paper, we try to find some kinds of compacton solutions in (2 + 1) dimensions.
Especially, we are interested in the possible interaction behaviour among (2 + 1)-dimensional
compactons.

To study the (2 + 1)-dimensional compactons, we take the (2 + 1)-dimensional Broer–
Kaup–Kupershmidt (BKK) system
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Hty − Hxxy + 2(HHx)y + 2Gxx = 0 (1)

Gt + Gxx + 2(HG)x = 0 (2)

as a simple illustration. The BKK system may be derived from the inner parameter-
dependent symmetry constraint of the Kadomtsev–Petviashvili (KP) equation [6]. Though
the integrability of the BKK system can be guaranteed by the integrability of the KP equation
(because it is a symmetry constraint of the KP equation), some authors have strictly proved
its integrability in some different sense. For instance, the Painlevé integrability and infinitely
many symmetries of the model have been given in [7]. Using some suitable dependent and
independent variable transformations [8], Chen and Li have proved that the BKK system can
be transformed to the (2 + 1)-dimensional integrable dispersive long wave equation system
(DLWE)

uty = −ηxx − 1
2 (u2)xy (3)

ηt = −(uη + u + uxy)x (4)

and the (2 + 1)-dimensional integrable AKNS (Ablowitz–Kaup–Newell–Segur) system

ψt = −ψxx + ψu (5)

φt = φxx − φu (6)

uy = ψφ. (7)

The ‘weak’ Lax pair and the inverse scattering scheme of the (2 + 1)-dimensional DLWE have
been given by Boiti et al [9].

When we take y = x, the BKK system (1) and (2) is reduced to the usual (1 + 1)-
dimensional BKK system, which can be used to describe the propagation of long waves
in shallow water [10]. Some authors have given many kinds of special solutions of the
(2 + 1)-dimensional BKK system, DLWE system and AKNS system [11–14]. Especially, Ying
and Lou had obtained some coherent structures of the BKK equation by means of the truncated
Painlevé expansion and the related Bäcklund transformation [11]. A somewhat richer class of
solutions of the BKK system can be found by means of the variable separation approach [12].
In [12], a special solution with some arbitrary functions is given. By selecting the arbitrary
functions appropriately, rich continuous localized solutions and the peakon solutions of the
BKK system have been discussed also in [12].

In section 2 of this paper, a short review on the variable separation procedure for the BKK
system is described. The compacton solutions and their interaction properties are discussed
in section 3. The last section is a short summary and discussion.

2. Review of the variable separation procedure

To study the possible compacton excitations, we give a short review of the variable separation
procedure here especially for the BKK system.

The first step of our variable separation approach is to change the original model to a
general multi-linear form by using the Painlevé Bäcklund transformation. For the BKK system
the corresponding Painlevé Bäcklund transformation reads{

H = (ln f )x + H0

G = (ln f )xy + G0
(8)

where {H0,G0} is an arbitrary known seed solution of the BKK system.
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Substituting (8) into the first equation of the BKK system leads to the following trilinear
form:

2H0
(
2f 2

x fy + f 2fxxy − ffyfxx − 2ffxfxy

)
+ 2H0xf (ffxy − fxfy) + 2f 2fxH0xy

−f (fxfty + fyftx + ftfxy + fxfxxy + fyfxxx + fxxfxy) + f 2(ftxy + fxxxy )

+ 2fxfy(ft + fxx) + 2H0yf
(
ffxx − f 2

x

) = 0. (9)

Using relations (9) and (8), the second equation of the BKK system is simplified to a bilinear
equation (

ffxx − f 2
x + ffx∂x

)
(G0 − H0y) = 0. (10)

The second step of the variable separation approach first developed in [16] is to select a
suitable trivial seed solution with arbitrary function(s). For the BKK system, it is easy to see
that

H0 ≡ h0 = h0(x, t) G0 = 0 (11)

with h0 being an arbitrary function of {x, t} is a trivial solution of the BKK system. For the
seed solution (11), equation (10) satisfies identically.

The next step is to solve the multi-linear equation by using a suitable variable separation
ansatz. For the BKK system, the related trilinear equation (9) can be solved by the following
variable separation ansatz:

f = a0 + a1p(x, t) + a2q(y, t) + a3p(x, t)q(y, t) (12)

where a0, a1, a2 and a3 are arbitrary constants and p ≡ p(x, t) and q ≡ q(y, t) are functions
of {x, t} and {y, t}, respectively. It is clear that the variables x and y now have been separated
totally.

Substituting (12) into (9) with (11) yields[−2(a1 + a3q) + fp−1
x ∂x

]
(pt + 2h0px + pxx) +

[−2(a2 + a3p) + f q−1
y ∂y

]
qt = 0. (13)

Because p is y independent and q is x independent, equation (13) can be separated into two
equations,

pt = −pxx − 2h0px + (a0a3 − a1a2)(c1p
2 − c3p + c2) (14)

qt = c1(a0 + a2q)2 + c2(a1 + a3q)2 + c3(a0 + a2q)(a1 + a3q) (15)

where the arbitrary functions c1 ≡ c1(t), c2 ≡ c2(t), c3 ≡ c3(t) are introduced by the variable
separation procedure.

Finally, because the function h0 is an arbitrary function of {x, t}, solving the variable
separation equation (14) becomes a trivial trick. One can treat the function p as an arbitrary
function while the function h0(x, t) can be fixed by (14), i.e.

h0 = 1

2px

[(a0a3 − a1a2)(c1p
2 − c3p + c2) − pt − pxx ]. (16)

In the same way, because the functions c1, c2 and c3 are arbitrary functions of t, one can easily
find some quite general solutions of the Riccati equation (15). Here are two special examples.

(1) If we write c1, c2 and c3 as

c1 = a2
3A2t

(a1a2 − a0a3)2
− a3(a1 + a3A2)A1t

(a1a2 − a0a3)2A1
− (a1 + a3A2)

2A3t

(a1a2 − a0a3)2A1
(17)

c2 = a2
2A2t

(a1a2 − a0a3)2
− a2(a0 + a2A2)A1t

(a1a2 − a0a3)2A1
− (a0 + a2A2)

2A3t

(a1a2 − a0a3)2A1
(18)
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c3 = (a0a3 + a1a2 + 2a2a3A2)A1t

(a1a2 − a0a3)2A1
− 2a2a3A2t

(a1a2 − a0a3)2
+ 2

(a0 + a2A2)(a1 + a3A2)A3t

(a1a2 − a0a3)2A1

(19)

with A1 ≡ A1(t), A2 ≡ A2(t) and A3 ≡ A3(t) being arbitrary functions of t, then the
general solution of (15) with (17)–(19) reads

q = A1

A3 + F1(y)
+ A2 (20)

where F1 ≡ F1(y) is an arbitrary function of y.
(2) If we select c1, c2 and c3 as

c1 = a2
3b0t

(a1a2 − a0a3)2
− a3(a1 + a3b0)b1t

(a1a2 − a0a3)2b1
−

[
(a1 + a3b0)

2 − b2
1a

2
3

]
b2t

(a1a2 − a0a3)2b1
(21)

c2 = a2
2b0t

(a1a2 − a0a3)2
− a2(a0 + a2b0)b1t

(a1a2 − a0a3)2b1
−

[
(a0 + a2b0)

2 − a2
2b

2
1

]
b2t

(a1a2 − a0a3)2b1
(22)

c3 = (a0a3 + a1a2 + 2a2a3b0)b1t

(a1a2 − a0a3)2b1
− 2a2a3b0t

(a1a2 − a0a3)2

+ 2

[
(a0 + a2b0)(a1 + a3b0) − a2a3b

2
1

]
b2t

(a1a2 − a0a3)2b1
(23)

with b0 ≡ b0(t), b1 ≡ b1(t) and b2 ≡ b2(t) being arbitrary functions of t, then the general
solution of (15) with (21)–(23) reads

q = b1 tanh (b2 + F2(y)) + b0 (24)

with F2 ≡ F2(y) being an arbitrary function of y.

Now, substituting (12) into (8) with (11), we find that the BKK equation possesses an
exact solution

H = (a1 + a3q)px

a0 + a1p + a2q + a3pq
+ h0 (25)

G = pxqy(a0a3 − a1a2)

(a0 + a1p + a2q + a3pq)2
(26)

where p is an arbitrary function, q is given by (20) or (24) or any other solutions of (15) while
h0 is determined by (16).

Because of the arbitrariness of the functions p and q, one can find abundant localized
excitations for the quantity G of the BKK system. Actually, expression (26) is valid for
various (2 + 1)-dimensional models such as the NNV (Nizhnik–Novikov–Veselov) equation,
ANNV (asymmetric NNV) equation, DS (Davey–Stewartson) equation, ADS (asymmetric
DS) equation [15], dispersive long wave equation (DLWE) and a general (N + M)-component
AKNS system [16–20]. Many kinds of interesting localized excitations have been discussed
in our previous papers [16–20]. In the next section, we focus our attention on the possible
compacton structures and especially on the interaction behaviour of compactons.

3. Compacton solutions and their interaction behaviour

It is known that in the (1 + 1)-dimensional case, different from other types of solitary wave
solutions, the compacton solutions are completely supported in a small finite region. Outside
this region, the compacton possesses the zero value identically. To my knowledge, there
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are many papers studying the (1 + 1)-dimensional compactons, however, there is no paper
discussing whether any type of compacton solution that is localized in all directions exists in
higher dimensions. Actually, similar to the continuous soliton-like solutions, there may be
quite rich compacton solutions in high dimensions because some arbitrary functions can be
included in the solutions of the high-dimensional models.

For the BKK system, the compacton solutions for the field G can be found simply by
selecting the arbitrary functions in expression (26) as piecewise smooth functions, say, if we
take

p =
N∑

i=1




0 x + vi t � x1i

pi(x + vi t) − pi(x1i) x1i < x + vi t � x2i

pi(x2i) − pi(x1i) x + vi t > x2i

(27)

and

q =
M∑

j=1




0 y � y1j

qj (y) − qj (y1j ) y1j < y � y2j

qj (y2j ) − qj (y1j ) y > y2j

(28)

where the functions pi, qj , i = 1, 2, . . . , N, j = 1, 2, . . . ,M are all arbitrary differentiable
functions with the conditions

pix |x=x1i
= pix |x=x2i

= 0, qjy |y=y1j
= qjy|y=y2j

= 0 (29)

then expression (26) becomes some type of (2 + 1)-dimensional multiple compacton solution
of the BKK system. In the selection (28), the functions Ai and ci of (17)–(20) are fixed as

A1 = 1 A2 = A3 = c1 = c2 = c3 = 0 q = 1

F1(y)
. (30)

For a (1 + 1)-dimensional nonlinear equation

F(u, ux, ut , uxx , . . .) = 0 (31)

the compacton solutions are weak ones. That means that though the (1 + 1)-dimensional
compacton solutions are non-differentiable, substituting them into (31) really yields a zero
distribution. In (2 + 1) dimensions, the situation is quite different. The satisfaction of the
nonlinear equation is guaranteed by the separation (14) and (15). So in principle, to find some
types of exact solutions, it is not necessary to put the once differentiable conditions (introduced
by (29)) on the functions p and q. However, similar to the (1 + 1)-dimensional case, we hope
some of the physical quantities, say, G for the BKK system, will still be continuous anywhere
and anytime. Because of the entrance of the first-order derivatives of the functions p and q in
the expression for G (26), we require the functions p and q to be once differentiable.

To study the interaction properties of the compactons, we should study the limiting
procedures, t → ∓∞, for (26) with (27) and (28). Without loss of generality, we assume that

v1 < v2 < · · · < vN (32)

for convenience of discussion. Because of the zero value property of the ith compacton outside
its supported region, we can write down its exact expressions before and after interaction.

Before interaction (t → −∞), the ith compacton can be expressed by

G−
i = (a0a3 − a1a2)Pixqy

(a0 + a1Pi + a2q + a3Piq)2
(33)

where q is still given by (28) and Pi is related to the original pi of (27) by

P−
i =

∑
j<i

[pj (x2j ) − pj (x1j )] +




0 x + vi t � x1i

pi(x + vi t) − pi(x1i) x1i < x + vit � x2i

pi(x2i) − pi(x1i) x + vi t > x2i

(34)
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while the general multiple compacton solution (26) can be written as

Gt→−∞ =
N∑

i=1

G−
i . (35)

In the same way, after the interaction (t → +∞), we have

Gt→+∞ =
N∑

i=1

G+
i (36)

G+
i = (a0a3 − a1a2)P

+
ixqy(

a0 + a1P
+
i + a2q + a3P

+
i q

)2 (37)

P +
i =

∑
j>i

[pj(x2j ) − pj(x1j )] +




0 x + vi t � x1i

pi(x + vi t) − pi(x1i) x1i < x + vi t � x2i

pi(x2i) − pi(x1i) x + vi t > x2i .

(38)

Remark 1. Expressions (33)–(38) are exactly correct and not approximate.

Remark 2. For the concrete examples, it is not necessary to take t → ∞ in the limiting
procedures. Expression (35) is always correct before interactions (all the compactons have not
yet met) and (36) is always valid after interactions (all the compactons have passed through
each other).

Remark 3. There is no phase shift for the interactions of the compactons expressed by (26)
with (27) and (28).

From the limiting results (33) with (34) and (37) with (38), we can see that the interactions
among compactons expressed by (26) with (27) and (28) are nonelastic for the general
selections of pi and qj with

pi(x2i) − pi(x1i) �= 0 at least for one of i. (39)

However, if we appropriately select pi such that

pi(x2i) − pi(x1i) = 0 ∀i (40)

then the interactions among these types of compactons become completely elastic!
To see the interaction behaviour of the compactons more concretely and visually, we

discuss two special examples by fixing the arbitrary functions pi and qj further.

Example 1 (Compactons without elastic interaction behaviour). One of the simplest selections
of the compactons without elastic interaction behaviour may be

p =
N∑

i=1




0 x + vi t � x0i − π
2ki

bi sin(ki(x + vi t − x0i)) + bi x0i − π
2ki

< x + vi t � x0i + π
2ki

2bi x + vi t > x0i + π
2ki

(41)

and

q =
M∑

j=1




0 y � y0j − π
2lj

dj sin(lj (y − y0j )) + dj y0j − π
2lj

< y � y0j + π
2lj

2dj y > y0j + π
2lj

(42)

where bi, ki , vi , x0i , dj , lj and y0j are all arbitrary constants.
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Figure 1. Evolution plot of a two-compacton solution (26) with (41), (42) and (43) at times
(a) t = −3, (b) t = −1, (c) t = 0, (d ) t = 1, (e) t = 3.

Figure 1 is the evolution plot of a two-compacton solution (26) with (41), (42) and

N = 2 M = 1 a0 = 20 a1 = a2 = 25a3 = 1 b1 = −2 v1 = −1

−b2 = d1 = k1 = k2 = l1 = 1 x01 = x02 = y01 = 0 v2 = 2. (43)

In [21] and [20], it has been pointed out that the interaction between two travelling ring shape
soliton solutions is completely elastic and the interaction between two travelling peakons is
not completely elastic, two peakons may completely exchange their shapes. From figure 1, we
see that the interaction between two compactons (which possess the property (39)) exhibits
a new phenomenon. The interaction is non-elastic but two compactons do not completely
exchange their shapes. We have also graphically checked the correctness of expressions
(33)–(34) for the selections (41), (42) and (43) at t = −3 (before interaction) and t = 3
(after interaction).
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Figure 2. Evolution plot of a two-compacton solution (26) with (44), (45) and (46) at times
(a) t = −1.5, (b) t = −0.5, (c) t = 0, (d ) t = 0.5, (e) t = 1.5.

Example 2 (Compactons with completely elastic interaction behaviour). One of the simplest
selections of the compactons with elastic interaction behaviour may be

p =
N∑

i=1




0 x + vi t � x0i − π
2ki

bi cosαi+1(ki(x + vi t − x0i)) x0i − π
2ki

< x + vi t � x0i + π
2ki

0 x + vi t > x0i + π
2ki

(44)

and

q =
M∑

j=1




0 y � y0j − π
2lj

dj cosβj +1(lj (y − y0j )) y0j − π
2lj

< y � y0j + π
2lj

0 y > y0j + π
2lj

(45)

where bi, ki, vi , x0i , dj , lj and y0j are all arbitrary constants and {αi, βj } for all {i, j } are
positive integers.
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Figure 2 shows the completely elastic interaction property of a two-compacton solution
(26) with (44), (45) and

N = 2 M = 1 a0 = 20 a1 = a2 = 25a3 = 1 b1 = −2 v1 = −1

v2 = 2 − b2 = d1 = k1 = k2 = l1 = 1 x01 = x02 = y01 = 0

α1 = α2 = β1 = 4. (46)
The correctness of expressions (37)–(38) for the selections (44), (45) and (46) at t = −1.5

(before interaction) and t = 1.5 (after interaction) have also been graphically checked.

4. Summary and discussion

In summary, in (2 + 1) dimensions, there are quite rich localized excitations. In a series of
our previous papers [16–23], many types of continuous localized solutions such as dromions,
lumps, breathers, ring solitons and some types of piecewise peakon solutions have been
obtained. Recently, many scientists have studied another type of (1 + 1)-dimensional piecewise
excitation, compactons. In this short paper, some types of (2 + 1)-dimensional compacton
solutions that are localized in all directions have been given.

Though the travelling dromions and the travelling saddle-type ring soliton solutions
possess completely elastic interaction properties [20, 21, 23], the interactions between two
travelling compacton solutions may have quite rich behaviour. For the general selections (27)
and (28) with (39), the interactions are non-elastic. The shapes of these types of compactons
will be changed after their interactions. For the special selections (27) and (28) with (40), the
interactions among compactons become completely elastic.

Because expression (26) is valid for many (2 + 1)-dimensional integrable models [20], the
compacton excitations and their interaction behaviour discussed here may be quite universal
in higher dimensions. Though the (1 + 1)-dimensional compacton solutions have been studied
widely in the literature [2–5], to our knowledge, the higher dimensional compacton solutions
localized in all directions are first found in this paper. So the more is said about the higher
dimensional compacton solutions the more they are worthy of further study.
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